94 research outputs found

    VANET Connectivity Analysis

    Get PDF
    Vehicular Ad Hoc Networks (VANETs) are a peculiar subclass of mobile ad hoc networks that raise a number of technical challenges, notably from the point of view of their mobility models. In this paper, we provide a thorough analysis of the connectivity of such networks by leveraging on well-known results of percolation theory. By means of simulations, we study the influence of a number of parameters, including vehicle density, proportion of equipped vehicles, and radio communication range. We also study the influence of traffic lights and roadside units. Our results provide insights on the behavior of connectivity. We believe this paper to be a valuable framework to assess the feasibility and performance of future applications relying on vehicular connectivity in urban scenarios

    Strategic Network Formation with Attack and Immunization

    Full text link
    Strategic network formation arises where agents receive benefit from connections to other agents, but also incur costs for forming links. We consider a new network formation game that incorporates an adversarial attack, as well as immunization against attack. An agent's benefit is the expected size of her connected component post-attack, and agents may also choose to immunize themselves from attack at some additional cost. Our framework is a stylized model of settings where reachability rather than centrality is the primary concern and vertices vulnerable to attacks may reduce risk via costly measures. In the reachability benefit model without attack or immunization, the set of equilibria is the empty graph and any tree. The introduction of attack and immunization changes the game dramatically; new equilibrium topologies emerge, some more sparse and some more dense than trees. We show that, under a mild assumption on the adversary, every equilibrium network with nn agents contains at most 2n−42n-4 edges for n≄4n\geq 4. So despite permitting topologies denser than trees, the amount of overbuilding is limited. We also show that attack and immunization don't significantly erode social welfare: every non-trivial equilibrium with respect to several adversaries has welfare at least as that of any equilibrium in the attack-free model. We complement our theory with simulations demonstrating fast convergence of a new bounded rationality dynamic which generalizes linkstable best response but is considerably more powerful in our game. The simulations further elucidate the wide variety of asymmetric equilibria and demonstrate topological consequences of the dynamics e.g. heavy-tailed degree distributions. Finally, we report on a behavioral experiment on our game with over 100 participants, where despite the complexity of the game, the resulting network was surprisingly close to equilibrium.Comment: The short version of this paper appears in the proceedings of WINE-1

    Centrality Analysis in Vehicular Networks

    Get PDF
    To better understand networking and security aspects of VANETs, we have been investigating network connectivity issues and mappings of car networks to the underlying road topology. Using this mapping and various metrics based on centrality, we locate hot-spots in vehicular networks to determine the most vulnerable points for jamming. We also use these to optimize the placement of roadside units

    Maximum Power Game as a Physical and Social Extension of Classical Games

    Get PDF
    We consider an electric circuit in which the players participate as resistors and adjust their resistance in pursuit of individual maximum power. The maximum power game(MPG) becomes very complicated in a circuit which is indecomposable into serial/parallel components, yielding a nontrivial power distribution at equilibrium. Depending on the circuit topology, MPG covers a wide range of phenomena: from a social dilemma in which the whole group loses to a well-coordinated situation in which the individual pursuit of power promotes the collective outcomes. We also investigate a situation where each player in the circuit has an intrinsic heat waste. Interestingly, it is this individual inefficiency which can keep them from the collective failure in power generation. When coping with an efficient opponent with small intrinsic resistance, a rather inefficient player gets more power than efficient one. A circuit with multiple voltage inputs forms the network-based maximum power game. One of our major interests is to figure out, in what kind of the networks the pursuit for private power leads to greater total power. It turns out that the circuits with the scale-free structure is one of the good candidates which generates as much power as close to the possible maximum total.ope

    Distributed Stochastic Power Control in Ad-hoc Networks: A Nonconvex Case

    Get PDF
    Utility-based power allocation in wireless ad-hoc networks is inherently nonconvex because of the global coupling induced by the co-channel interference. To tackle this challenge, we first show that the globally optimal point lies on the boundary of the feasible region, which is utilized as a basis to transform the utility maximization problem into an equivalent max-min problem with more structure. By using extended duality theory, penalty multipliers are introduced for penalizing the constraint violations, and the minimum weighted utility maximization problem is then decomposed into subproblems for individual users to devise a distributed stochastic power control algorithm, where each user stochastically adjusts its target utility to improve the total utility by simulated annealing. The proposed distributed power control algorithm can guarantee global optimality at the cost of slow convergence due to simulated annealing involved in the global optimization. The geometric cooling scheme and suitable penalty parameters are used to improve the convergence rate. Next, by integrating the stochastic power control approach with the back-pressure algorithm, we develop a joint scheduling and power allocation policy to stabilize the queueing systems. Finally, we generalize the above distributed power control algorithms to multicast communications, and show their global optimality for multicast traffic.Comment: Contains 12 pages, 10 figures, and 2 tables; work submitted to IEEE Transactions on Mobile Computin

    Information metrics for model selection in function estimation

    Get PDF
    A model selection framework is presented for function estimation under limited information, where only a small set of (noisy) data points are available for inferring the nonconvex unknown function of interest. The framework introduces information-theoretic metrics which quantify model complexity and are used in a multi-objective formulation of the function estimation problem. The intricate relationship between information obtained through observations and model complexity is investigated. The framework is applied to the hyperparameter selection problem in Gaussian Process Regression. As a result of its generality, the framework introduced is applicable to a variety of settings and practical problems with information limitations such as channel estimation, black-box optimisation, and dual control

    An Information-Based Learning Approach to Dual Control

    Get PDF
    Dual control aims to concurrently learn and control an unknown system. However, actively learning the system conflicts directly with any given control objective for it will disturb the system during exploration. This paper presents a receding horizon approach to dual control, where a multiobjective optimization problem is solved repeatedly and subject to constraints representing system dynamics. Balancing a standard finite-horizon control objective, a knowledge gain objective is defined to explicitly quantify the information acquired when learning the system dynamics. Measures from information theory, such as entropy-based uncertainty, Fisher information, and relative entropy, are studied and used to quantify the knowledge gained as a result of the control actions. The resulting iterative framework is applied to Markov decision processes and discrete-time nonlinear systems. Thus, the broad applicability and usefulness of the presented approach is demonstrated in diverse problem settings. The framework is illustrated with multiple numerical examples

    Wind Versus Storage Allocation for Price Management in Wholesale Electricity Markets

    Get PDF
    This paper investigates the impacts of installing regulated wind and electricity storage on average price and price volatility in electricity markets. A stochastic bi-level optimization model is developed, which computes the optimal allocation of new wind and battery capacities, by minimizing a weighted sum of the average market price and price volatility. A fixed budget is allocated on wind and battery capacities in the upper-level problem. The operation of strategic/regulated generation, storage, and transmission players is simulated in the lower-level problem using a stochastic (Bayesian) Cournot-based game model. Australia's national electricity market, which is experiencing occasional price peaks, is considered as the case study. Our simulation results quantitatively illustrate that the regulated wind is more efficient than storage in reducing the average price, while the regulated storage more effectively reduces the price volatility. According to our numerical results, the storage-only solution reduces the average price at most by 9.4%, and the wind-only solution reduces the square root of price volatility at most by 39.3%. However, an optimal mixture of wind and storage can reduce the mean price by 17.6% and the square root of price volatility by 48.1%. It also increases the consumer surplus by 1.52%. Moreover, the optimal mixture of wind and storage is a profitable solution unlike the storage-only solution
    • 

    corecore